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Abstract

Gene expression is controlled by a family of proteins called transcription fac-
tors (TF) that bind specific regions of the DNA molecule and thereby promote or
block the transcription of nearby genes. We are interested in the identification of
transcription factor binding sites (TFBS) from experimental (ChIP-Seq) data of
primate cells. This is a challenging problem because TFBS that are bound by a
certain TF may vary and there is little or no knowledge about the generating distri-
bution (motif ). Experiments provide us with a set of sequences that are enriched
with instances of a motif but also contain several other patterns such as simple
repeats or retroviral insertions. We use the Dirichlet (cf. Ferguson [1973]) and
Pitman-Yor processes (cf. Pitman and Yor [1997]) to express our prior belief about
the distribution of the number of clusters and their sizes. In addition, a structure
analysis of the transciption factor provides us with a first prediction of the mo-
tif. To incorporate this knowledge, we use a base measure which is a mixture of a
uniform prior and a prior based on the predicted motif. Results from ChIP-Seq ex-
periments usually contain between 2, 000, 000 and 5, 000, 000 nucleotides, which
makes the common Gibbs sampling approach very demanding. The approxima-
tion of the posterior is further complicated by the Pitman-Yor process prior, which
requires many samples until the stationary distribution is reached. We also ex-
plore other process priors that are motivated from species sampling problems and
obtain similar results using substantially less sampling steps. Moreover, we are
interested in exploring alternative methods such as variational Bayes approaches.
To incorporate information from homologous sites we present an efficient algo-
rithm for the computation of Felsenstein’s evolutionary model. It allows us to
obtain analytical expressions of many posterior quantities.

Whether or not a TFBS is present in the proximity of a gene is important information for the under-
standing of gene regulatory networks. To identify TFBS in the primate genome for a given protein
of interest (POI) we infer a model (motif) for potential binding sites from ChIP-Seq data. These
experiments provide us with a set of sequences of approximately 500 to 1000 nucleotides that are
enriched with TFBS. It is assumed that whatever repeated pattern is found might correspond to a
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potential motif. A first difficulty is that each sequence may contain no or any number of binding
sites. Besides, it is likely that a single motif might not fully characterize all binding sites (cf. Barash
et al. [2003]). It is also well known that noncoding DNA regions in primates contain many repeated
patterns and low complexity sequences (simple repeats, tandem repeats, interspersed repeats). The
approximate length of the binding sites is known from the protein structure. We also have a tentative
prediction of the motif that was derived from the structure of the protein, whose reliability is how-
ever afflicted with high uncertainty. Unfortunately, little is also known about the binding process
itself and the diversity of sites that are bound by the POI. A high diversity is often expected for long
transcription factors that bind up to 50 nucleotides and should be expressed by a low information
content of the motif.

This motivates the application of the Dirichlet and Pitman-Yor processes. First, they allow us to
search for an unknown number of repeated patterns. Second, we can use a mixture model as base
measure which consists of a uniform prior and predictions of the motif from the protein structure.
This allows us to ignore the predicted motifs if they poorly match the data and in addition to identify
unrelated repeated patterns. Finally, we know that the data set is enriched with TFBS and the motifs
should be among the largest clusters with a potentially low information content. We therefore want
to place a prior on the number of sites that belong to a motif, given by the cluster sizes.

For the Dirichlet process, the number of clusters grows logarithmically in the number of observations
and its rich-gets-richer property causes some of them to be large. On the other hand, the Pitman-Yor
process produces clusters whose sizes follow a power-law distribution, which is why it is preferred
for statistical models of language (cf. Goldwater et al. [2006]). For our application there is little
knowledge about what process might be best suited for the distribution of repeated patterns, but
experimental validations of our predictions will hopefully provide a deeper insight.

We have developed a continuum of priors (cf. Poppe and Bourguignon) that are motivated by species
sampling problems (cf. Bunge and Fritzpatrick [1993], Zabell [2005]). The continuum contains
priors that satisfy exchangeability including the Dirichlet and Pitman-Yor processes. We test one
such prior on the ChIP-Seq data set and compare the results with those from the Dirichlet and
Pitman-Yor processes.

To compute posterior estimates we use the collapsed Gibbs sampling scheme (cf. MacEachern
[1994], Neal [2000]), where the Markov chain is defined on the latent partitions of the data set. The
nonidentifiability of clusters is a well known problem for the sampling of mixture models. To obtain
an unbiased posterior estimate we record in every sampling step all subsequences that have been
assigned to the same cluster. The posterior then resembles a similarity measure for all subsequences
of a given length. This approach is computationally very demanding for large-scale applications,
such as ours. The sampling process is further complicated by the Pitman-Yor prior and the rich-get-
richer property. Large clusters form already at the very first sampling steps and it takes many more
samples until all clusters are filled with appropriate subsequences.

We use information from homologous sequences in related species to improve the identification of
TFBS. To model the evolution of such sequences, the model of Felsenstein [1981] is used. We have
developed efficient algorithms to compute the likelihood with respect to a given phylogenetic tree
with Felsenstein’s evolutionary model. The methods allow us to obtain analytical expressions of
posterior quantities.

Our preliminary results show that with our method, which is based on Bayesian nonparametrics, we
were able to identify repeated patterns within ChIP-Seq data. The Gibbs sampling approach however
is too expensive to sample the whole data set. By excluding known repeated patterns we were able
to reduce the data set by half, which allows us to obtain several thousand samples from the posterior
distribution. Nevertheless, it is highly questionable whether excluding known repeated patterns is a
valid approach. Accordingly, we require an alternative method, such as variational Bayes, to process
the full data set.
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